New Fossil Cercopithecoids from the Late Miocene of As Sahabi, Libya

BRENDA R. BENEFIT, MONTE MCCROSSIN, NOEL T. BOAZ, and PARIS PAVLAKIS

ABSTRACT

A preliminary revision of the fossil cercopithecoids of As Sahabi is presented based on a well-preserved right half-mandible (1P25C) with minimally worn P3-M3 and a left distal humerus (514P28A) collected in 2007. The molar teeth of 1P25C are distinguished from similarly-aged Macaca libyca (Wadi Natrun, Egypt), cf. Macaca sp. (Menacer, Algeria), and cf. Macaca sp. (Casablanca, Spain) in having M₂s that are smaller, squarer, and more flared buccally. The As Sahabi papionin is distinguishable from Parapapio lothagamensis in having a less elongated and more steeply oriented mandibular symphysis, although the two monkeys share with *M. libyca* the presence of a P₃ metaconid. Differences in size between 1P25C and some of the previously collected papionins are here attributed to dental size sexual dimorphism, although the future discovery of new material might lead to recognition of two moderately small papionins from the site. The As Sahabi papionin belongs to a new species of either Parapapio or Macaca. A newly discovered distal humerus from As Sahabi exhibits clearly cercopithecine and terrestrial features, including a strongly retroflexed medial epicondyle. It may well belong to the same species as 1P25C. A previously collected distal humerus from As Sahabi 10P61A appears to be colobine due to its well-developed lateral trochlear keel and capitulum. None of the other postcrania can clearly be assigned to subfamily due to their poor preservation. Previously collected teeth from As Sahabi all exhibit lower cusp relief and greater buccal flare than is observed in modern colobines. Given that fossil papionins from this time range have greater occlusal relief than extant cercopithecines, it is possible that only papionins are represented in the As Sahabi dental sample. Such a monkey might have had an eclectic, but predominantly frugivorous diet.

Brenda R. Benefit, Department of Sociology and Anthropology, New Mexico State University, Las Cruces, New Mexico 88003, U.S.A., bbenefit@nmsu.edu

Monte McCrossin, Department of Sociology and Anthropology, New Mexico State University, Las Cruces, New Mexico 88003, U.S.A., mmccross@nmsu.edu

Noel T. Boaz, International Institute for Human Evolutionary Research, Integrative Centers for Science and Medicine, 2640 Takelma Way, Ashland, Oregon 97520, U.S.A., noeltboaz@integrativemedsci.org, and Department of Anatomy, Ross University School of Medicine, P.O. Box 266, Portsmouth Campus, Roseau, Commonwealth of Dominica, nboaz@rossmed.edu.dm

Paris Pavlakis, Department of Historical Geology – Paleontology, Faculty of Geology and Geoenvironment, University of Athens, Panepistimioupoli Zografou, 157 84 Athens, Greece, pavlakis@geol.uoa.gr

INTRODUCTION

The discovery of two new wellpreserved Old World monkey specimens at As Sahabi by the East Libya Neogene Research Project during 2007 adds significantly to our knowledge of early stages in cercopithecoid evolution. Analysis of the 15 cercopithecoid specimens collected by the International Sahabi Research Project led by Boaz, Gaziry, and El-Arnauti between 1978 and 1981 indicated that they consist of at least one species of papionin referred to cf. Macaca sp. and one species of colobine monkey referred to Colobinae gen. sp. indet. (Boaz et al., 1979; Boaz and Meikle, 1982; Meikle, 1987). They are part of a larger North African cercopithecoid radiation that includes fossils from the 6-7 million-year-Menacer in Algeria old sites of (Arambourg, 1959; Thomas and Petter, 1986), Wadi Natrun in Egypt (Stromer, 1913) and Toros-Menalla in Chad (Vignaud et al., 2002). Like As Sahabi, Menacer and Wadi Natrun each preserves one papionin and one colobine monkey of moderate size (Table 1). Due to their geological age, these Late Miocene North African monkeys preserve early stages in the evolutionary history of papionins (baboons and macaques) which are estimated on the basis of molecular evidence to have diverged from cercopithecins (guenons) 11.5 million years ago. Macaque and baboon lineages are estimated to have split 7.6 million years Early African Colobina ago. are reconstructed as having split from Asian million years ago Presbytina by 9.6 (Disotell, 2000; Sterner et al., 2006; Tosi, 2005; Ting, 2007).

Although their numbers are small, the North African fossils once represented much of what was known about Old World monkey evolution in Africa between 15 and 4 ma. Since 2003 the 5-8 ma deposits at Lothagam and Lemudong'o in Kenya and in the Middle Awash in Ethiopia have produced cercopithecoid fossils that demonstrate a greater number of species of varying body-size, locomotor, and dietary adaptations than was previously imagined (Table 1; Leakey et al., 2003; Ambrose et al., 2003; Haile-Selassie et al., 2004; Hlusko 2007a, 2007b; Frost, 2007). The papionin species Parapapio lothagamensis from the lower member of the Nawata Formation has dental traits that were unexpected for a monkey of its geologic age, combining primitive features of the Middle Miocene victoriapithecids with those characterising modern papionins (Leakey et al., 2003). The Lothagam cercopithecoid community resembles those from the North African sites which contain at least one papionin and one colobine species, and at which papionins make up a majority of the cercopithecoid fauna. In contrast, the abundant cercopithecoid fauna at the 6 ma site of Lemudong'o may consist entirely of three previously unknown colobine species (Hlusko, 2007a, 2007b). They demonstrate a greater diversity of body-size, postcranial dietary, and adaptations among Late Miocene Colobinae than was once predicted.

A preliminary description of the new As Sahabi fossil monkeys is provided here in the context of the new eastern African discoveries and a re-examination of previously collected fossils from North Africa. Fossil cercopithecoids from Table 1. Fossil cercopithecoids from the Late Miocene of Africa, based on information in Stromer (1913), Szalay and Delson (1979), Delson (1980), Benefit and Pickford (1986), Thomas and Petter (1986), Meikle (1987), Senut (1994), Grine and Hendey (1981), Gundling and Hill (2000), Kingston *et al.* (2002), Vignaud *et al.* (2002), Leakey *et al.* (2003), Ambrose *et al.* (2003), Frost (2007), and Hlusko (2007).

NORTH AFRICA

Menacer (Marceau)	<i>Macaca</i> sp. (n=31) ? <i>Colobus flandrini</i> (n=8)	ca. 7 ma
Wadi Natrun	Macaca libyca(n=?3) Libypithecus markgrafi (n=?3)	ca. 6 ma
As Sahabi	Macaca sp. (n=6) Colobinae sp. (n=1) Cercopithecoidea indet. (n=13)	6-7 ma
Toros Menalla	Cercopithecidae	6-7 ma
EASTERN AFRICA		
Ngeringerowa, BPRP #25	Microcolobus tugenensis (n=1)	9.5-9.0 ma
Nakali	Colobinae indet (n=3)	9-7 ma
Mpesida, Rurmoch BPRP #85	Colobinae indet (n=2)	7-6.37 ma
Nawata Lower, Lothagam	Parapapio lothagamensis (n=76) Colobinae sp. A (n=4) Colobinae sp. B (n=7) Colobinae indet (n=4)	6.57-7.9 ma
Nawata Upper, Lothagam	Parapapio lothagamensis (n=33)	6.24-5.5 ma
Colobinae sp. A (n=3)		
Colobinae sp. B (n=8)		
Colobinae indet $(n=4)$		
Nkondo Fm., Uganda	Colobinae, 2 M3s	6.5-6.2 ma
Lukeino	a few fragments	6.3-5.6 ma
Lemundong'o	Paracolobus sp. nov	6 ma
	Colobinae small taxon	0 1110
	Colobinae large taxon	
	(n-281 total cerconithecoid)	
Adu Asa and	Plionanio alemui	5 2-5 8 ma
lower Sangatole	Kuseracolohus aramisi	5.2-5.0 ma
Formations Ethiopia	Colobinge indet (larger species)	
rormations, Eunopia	Corcopithecidae indet (small species))
	(n 65 total carconithagoid))
SOUTH AFRICA		
JUUIH AFRICA	$\mathbf{D}_{\mathbf{r}}$	6
Laangebaanweg	Papionin (n=1)	o ma

Menacer were studied at the Museum of Natural History in Paris and *Macaca libyca* at the American Museum of Natural History in New York.

COMPARATIVE DESCRIPTION

1P25C was found at Locality P25C in January of 2007 by Paris Pavlakis. The specimen is a right half-mandible with C- M_2 and erupting M_3 (Figure 1). The canine tip is broken, and a tiny flake of enamel is missing below the median buccal cleft of M_2 , but otherwise the teeth are very well

Figure 1. Mandible 1P25C. Scale is 1 cm.

preserved. The large canine and welldeveloped P_3 honing facet indicate that the specimen is a male, and the erupting M_3 indicates that it is a subadult. The M_2 and P_3 show very slight wear on cusp tips. The P_4 and M_1 are more worn with small circles of dentin exposed on buccal cusps. The mandible preserves an intact corpus from C to M_3 , a small portion of the lateral part of the symphysis, and a large portion of the ramus from gonial angle to about two-thirds of its height where it is broken well below the coronoid process and condyle.

Mandible

The new mandible 1P25C is one of three known from As Sahabi (Table 2). The three mandibles are attributed to Cercopithecinae based on the morphology of their associated dentition. 1P28A preserves a corpus from symphysis to M_3 . but no ramus. Teeth associated with the specimen, a P_3 to fully erupted M_3 and canine root, are poorly preserved and missing enamel over much of their surface.

Table 2. As Sahabi cercopithecoid fossils. Attributions differ slightly from those described by Boaz and Meikle (1982) and Meikle (1987).

CF. PARAPAPIO OR MACACA SP.

1P25C	Right half-mandible, male, with ca- nine to partially erupted M3
1P28A	Right half-mandible, male, with ca-
57P99A	Right mandible fragment with P3 and M1
105P16A	Left I1 crown
841P34A	Left lower M1
514P28A	Left distal humerus

COLOBINAE GEN. INDET 10P61A Left distal humerus

CERCOPITHECOIDEA INDET

151P81A	Right upper M2 or 3
244P16A	Lingual half of right lower P4
P61A	Left upper M1 collected by
	Jordi Agusti
P61A	Right lower I2 collected by
	Jordi Agusti
13P15A	Right distal humerus
34P30A	Left distal humerus
12P33A	Right distal humerus
24P11A	Right Proximal ulna
1P17B	Right proximal end and shaft of femur
121P87A	Right femoral head and neck
11P115A	Left calcaneus
21P87A	Proximal phalanx
P61A	Hallucial proximal phalanx collected
	by Jordi Agusti

The size of the root and development of the P_3 honing facet indicate it is a male. 57P99A preserves only the top half of the corpus from below I_2 to M_2 alveoli. It retains a P_3 that is missing enamel buccally and a well-preserved M_2 that is worn to a somewhat greater degree than that of 1P25C, with somewhat larger circles of dentine on its buccal cusps. The small size of the canine root and P_3 suggest it was probably female.

Of the three mandibles only 1P28A preserves the symphysis. The strong inferior transverse torus forms a distinct simian shelf that extends further posteriorly

than the superior planum as in all Cercopithecinae. The anterior aspect of the symphysis slopes at an angle of close to 38° as in *Pliopapio* from the Middle Awash. specimen YPM 21551 of M. libyca, and most living macaques including Macaca fascicularis (Frost, 2001). This trait differentiates the As Sahabi cercopithecines from specimen BSM I505 of Macaca libyca, Parapapio lothagamensis, and Parapapio ado which have more elongated and steeply sloping symphyses (25° to the occlusal plane of the molar teeth in P. lothagamensis according to Leakey et al 2003; Figure 2), similar to larger bodied

Figure 2. Left column: corpus and symphysis of 1P25C (center) and 1P28A (bottom); Right column: *P. lothagamensis* mandible KNM-LT 23091 (top), and *M. libyca* mandibles BSM I505 (middle) and YPM 21551 (bottom). Scale is 1 cm.

baboons and unlike other Old World monkeys. Differences between *M. libyca* specimens BSM I505 and YPM 21551 are difficult to reconcile and may exceed that expected within a single taxon. The ratio of symphysis height to thickness is 117 for 1P28A, but 75.4 for *M. libyca* (specimen BSM I505) and 84.3 for *P. lothagamensis*. Values of symphyseal height to thickness for *M. libyca* and *P. lothagamensis* are closest to baboons, whereas that of 1P28A is similar to extant macaques.

The mandibular corpus of 1P25C resembles that of 1P28A, but is shallower relative to both M_2 length and corpus thickness at M_2 (Figure 3). Differences between the two specimens fall in the range of variation of *M. nemestrina*, and might be

Figure 3. Plots of corpus height versus M2 length and thickness for dimensions of Middle Miocene victoriapithecids (V. macinnesi) at three stratigraphic levels at Maboko Island (V3, V5b, and V5w), specimens currently attributed to Prohylobates from Wadi Moghara (Gen indet mog) and Buluk (P. sp. Buluk), Late Miocene papionins M. libyca, P. lothagamensis and As Sahabi specimens, and extant vervets (Chlorocebus aethiops) and macaques (Macaca mulatta, M. fascicularis, and M. fuscata).

attributable to the subadult status and incomplete mandibular growth of 1P25C. M. libvca specimen YPM 21551 is intermediate between the two As Sahabi mandibles in terms of corpus height, but is cross-section thinner in than both specimens. The corpus of P. lothagamensis mandible KNM-LT 23901 is slightly deeper than 1P28A, although corpus height relative to M₂ length corpus height of the As Sahabi, Natrun, and Lothagam specimens fall within the range observed for Macaca nemestrina.

Development of a mandibular fossa is extremely slight in 1P28A and even shallower in 1P25C. This feature differentiates the As Sahabi, Lothagam, and Natrun cercopithecines from *Papio*, *Theropithecus, Mandrillus, Gorgopithecus,* and *Lophocebus* which have welldeveloped fossae, and makes them more similar to *Parapapio* and *Macaca* among papionins.

Dentition

The erupting male canine of 1P25C is the first known for a cercopithecoid from As Sahabi. It is 8.55 mm long mesiodistally, 5.43 mm wide labiolingually, and more than 12.4 mm tall to the point where the tip is broken away. These dimensions are slightly smaller than those observed for *P. lothagamensis*.

The P_3 of 1P25C is larger than the

female P_3 associated with 57P99A, the length of the female P₃ being only 75% that of the male. A similar relationship is found in P. lothagamensis for which the average female P₃ length is 83% as large as the males. The male P₃ also has a much larger honing facet (for sharpening of the upper canine) than the female. Lingually the P_{3S} of 1P35C and 57P99A are very similar in morphology with small but distinct lingual metaconids set distal to the tip of the larger taller protoconid (Figure and 4). Metaconids are present on the P_3s of P. lothagamensis, Victoriapithecus macinessi, and undescribed papionins from Taung, but do not occur in Macaca sp. from Menacer. P_3 metaconids are extremely rare among

Figure 4. P3 metaconids from lingual view on 57P99A (top) and 1P25C (bottom). Scale is 1 cm.

modern Old World monkeys, although found on one (AMNH 19014) out of four *Macaca sylvanus* and in no other cercopithecine species surveyed at the American Museum of Natural History. Since no unworn P_3 is known for *M. libyca*, its resemblance to other species is not known. On both the male and the female P_{3s} from As Sahabi postmetacristids join the distolingual corner of the distal margin. The lingual surface of the crown of 1P25C has a deep dimple distally below the postmetacristid. The P_3 of 57P99A has a similar distal lingual dimple, but it is shallower in the female.

The P₄ of 1P25C has a metaconid that is slightly taller than the protoconid, and is broader mesially than distally. The crown is not obliquely rotated relative to the long axis of the molar row. The P. *lothagamensis* P_4 is described as being obliquely rotated as in V. macinnesi (Leakey et al., 2003), but examination of casts and photographs indicate that the degree to which it is oblique is slight as in many macaques, and less than that seen in victoriapithecids. As Sahabi and M. libyca $P_{4}s$ appear to have resembled those of *P*. lothagamensis in having been very slightly obliquely oriented, but the condition seems to have little phylogenetic value because it is widespread among cercopithecines.

The first molar of 1P25C is the largest known from As Sahabi. In comparison, the estimated length of the M_1 in mandible 1P28A is the smallest, and the M_1 associated with female partial mandible 57P99A is intermediate in length (Table 3). As Sahabi specimen 841P34A was previously identified as an isolated dp₄, but its length, cusp height, and overall

proportions compare well with M_1 s from the site. It is treated as an M_1 in this paper. The only well-preserved cercopithecoid M_2 s and M_3 s from As Sahabi are those of 1P25C. Only the M_3 hypoconulid of the molars in 1P28A has intact enamel. Estimated lengths of 1P28A molars are shorter than those of 1P25C, but within the range of variation expected for a single species.

Late Miocene papionins from Europe, eastern Africa, and northern Africa are all of moderate size, with those from Menacer being the largest (Table 3). M_{2} s of *M. libyca* are larger than 1P25C, but As Sahabi and Natrun monkeys overlap in M_1 size. M_1 and M_2 lengths of *M*. sp. from Menacer are larger than those from As Sahabi. *P. lothagamensis* is similar to *M. libyca* in M_1 length, but to 1P25C in M_2 length. The M_1 of *M*. sp from the Late Miocene of Spain is just larger than that of 1P25C.

The M_2 of 1P25C is highly living distinctive among and fossil cercopithecoids in being more square due to its width being only slightly less than its length (L/MW=104%), and having more exaggerated buccal flare (MCP/MW=48%) (Figure 5). A rounded cingulum occurs above the cervix on the buccal cusps. Only Middle Miocene victoriapithecids, extant mangabeys, and Allen's swamp monkey are similar to 1P25C in combining high M₂ buccal flare with nearly square crown dimensions. Worn specimens of M. libyca approach 1P25C in shape, but are far less flared. The only unworn specimen attributed to M. libyca is much more elongated (L/MW = 120), and moderately flared (MCP/MW=53%). The majority of

Table 3. Craniodental measurements. CD=corpus depth, CT=corpus thickness, L=mesiodistal length, W=buccolingual width, CH=labial crown height, and HF=honing facet height. Measurements for P. lothagamensis are from Leakey et al. (2003). MANDIBLE CDP4 CDM2 CT M2 19 23 16.9 22.1 1P25C 12.1 10.2 1P28A 57P99A 10.5 P. lothagamensis M. libyca YPM 21551 25.5 21.3 12.4 21.84 9.7 ANTERIOR TEETH IIL IIW IICH I2L I2W P3L P3W P3HF P4L P4W 105P16A 4.7 4.8 11.6 7.7 13.5 1P25C (male) 6.25 57P99A (female) 5.8 5.6 5.54 3.5 5.4 P61A MOLAR TEETH M1 M2 M3 MW LOWER DW MW DW MW DW L L L 1P25C 57P99A 1P28A 8.2 7.1 5.85 8.9 8.45 7.1 5.9 7.5 11.2 7.5 +6.7 +6.95 6.75 7.7 10.6 8.6 841P34A 6.2 5.9 M. libyca YPM 21551 YPM 21552 6.95 8.1 7.25 7.4 8.6 9.55 7.75 7.45 9.56 8.3 9.9 13.0 9.9 9.0 cf. M. sp. Menacer 9.1 Average 7.55 6.8 9.55 7.8 7.4 10.4 7.4 6.2 P. lothagamensis 7.6 6.2 Average 6.4 9.0 7.7 7.2 11.4 7.7 6.8 M. sp. Almenara 6.2 6.1 UPPER 151P81A 7.15 7.1 6.6 6.25 6.0 6.85 P61 M. libyca 9.1 7.7 8.1 9.5 9.3 8.2 8.0 7.45 9.4 Average cf. M. sp. Menacer 7.75 7.9 7.25 9.0 8.8 8.05 8.6 8.5 8.1 Average P. lothagamensis Average 8.0 7.8 7.6 9.2 9.3 8.8 8.9 9.1 7.2

Figure 5. Molar indices showing degree of elongation (crown length [L]/mesial width [MW]) and buccal flare (distance between tips of mesial cusps [MCP]/ mesial width

[MW])

274

Lower M2

Figure 6. Molar indices showing relative height of the metaconid (MLCH/ DLCH) and degree to which mesial width is greater than distal width (MW/ DW).

Lower M2

P. lothagamensis $M_{2}s$ are somewhat longer relative to width, although their molars are described as being highly flared (Leakey et al. 2003). Macaca sp. from Menacer is very different from 1P25C in being elongated (L/ MW=121 on average) and having low buccal flare (MCP/MW=65%). Unworn As Sahabi M_1 841P34A shows the same pattern of high buccal flare as the M_2 (MCP/MW = 50.7), but is the most elongated of As Sahabi M₁s (L/MW=124, range=113-124). The M_1 of 1P25C is less flared due to wear (MC/MW=67), but more square (L/MW=115). M_1s of *P*. lothagamensis, cf. Macaca from Menacer, the isolated M_1 from Alemenara, *M*. sylvanus, and M. majori are more elongated but less flared than As Sahabi. Highly worn M_1 s of *M. libyca* are the squarest of the Late Miocene papionins, but the unworn M_1 is more elongated (L/MW=127). Little flare (MCP/MW=72) is observed on the unworn M_{1s} and no flare is observed on the worn M_{1s} of *M. libvca*.

Mesial width exceeds distal width on the M_2 of 1P25C by an even greater amount than is observed in all other cercopithecoid species sampled (MW/ DW=113), and is slightly bigger than distal width for the M₁. Only M₁s from Menacer have even larger mesial than distal widths than is observed for As Sahabi. This difference may be related to an overall small size of the entoconid. The unworn M₁ and M₂ entoconids of 1P25C are much shorter and smaller than the metaconid, a condition seen in V. macinnesi. Р. lothagamensis, and some extant macaques (Figure 6). Because the metaconid is positioned slightly mesial to the the protoconid, the mesial transverse lophid connecting these cusps is obliquely oriented relative to the distal lophid. Such skewing of the mesial lophid is not typical of cercopithecoid lower molars, but is seen among macaques.

Occlusal relief is similarly low for the As Sahabi, Natrun, and Menacer molars and overlaps that of several macaque species and greater than that of late Miocene colobines. The sum of M_2 shear crest lengths is 262% that of crown length for 1P25C as in extant *Macaca fascicularis* and *Macaca nemestrina*, indicating the As Sahabi monkey may have had a similarly frugivorous diet and that they did not feed on hard seeds like the extant mangabeys which have lower shear crest lengths. *M.* sp. from Menacer has higher shear crests similar to *M. radiata*.

What is visible of the erupting M_3 of 1P25C indicates that it would have had high buccal flare like the M_2 and similar occlusal relief. The hypoconulid is small and centrally positioned on both 1P25C and 1P28A. Entoconid size is very small in width and crown height. In contrast entoconids are well-developed, and hypoconulids are large and positioned buccally at the end of a long and transversely oriented postentoconid in both *P. lothagamensis* and *M. libyca*.

Other As Sahabi Teeth

In addition to the new specimens, the cercopithecoid collection includes an unworn lower central incisor, 105P16A. Its very thin lingual enamel indicates that it had papionin affinities and could easily belong to the same species as 1P25A. A very worn lower lateral incisor was collected by Jordi Agusti in 1999 and is of similar size.

Two upper molars are now known from As Sahabi, an upper right M^2 (or 3) 151P81A and an upper left M^2 (or 1) from P61A collected by Jordi Agusti. Both are smaller than upper molars of other North African papionins and P. lothagamensis, although they overlap in size with M¹s and $M^{3}s$ of *Mesopithecus*. The tooth found by Agusti is wider than long, whereas 151P81A is as wide mesially as long. Both specimens are constricted distally with greater mesial than distal width, as in many colobine and cercopithecine species. Cusp relief on both specimens is lower than that observed in modern colobine species, but similar to that observed in the late Miocene colobines *Mesopithecus* and Colobus flandrini, and in many late Miocene and extant papionins. Specimen 151P85A has a lower degree of buccal flare (MCP/ MW=69) than most papionins and late Miocene colobines. A low degree of flare is observed on worn specimens of *M. libyca*, but the condition in unworn specimens is unknown. *M.* sp. from Menacer shows more flared upper molars than 151P81A although lower molars of the species are less flared than those from As Sahabi. Nothing aligns 151P85A definitively with either Colobinae or Cercopithecinae.

Distal Humerus

The new As Sahabi distal humerus 514P28A (Figure 7) was collected by Noel Boaz in 2007. It exhibits cercopithecine morphological features consistent with close affinities to cercopithecines in general

Figure 7. Cercopithecid distal humeri 514P28A (A-C), 13P15A (D-F), 12P33A (G-I), 34P30A (J-L), and 10P61A (M-O) in anterior (top row), posterior (middle row), and distal (bottom row) views. Scale divisions are mm.

and, with less certainty, to papionins in particular. Overall, the 514P28A distal humerus finds its greatest resemblance with semi-terrestrial and terrestrial cercopithecoids, such as the vervet monkey (Chlorocebus aethiops), macaques, and Middle Miocene V. macinnesi. Its size is consistent with the species represented by the new mandible 1P25C as well as 1P28A from the same locality. The dimensions of 514P28A are presented in Table 4. This specimen is reasonably complete and wellpreserved in spite of some erosion. It is better preserved than the four cercopithecid distal humeri previously collected at As (13P15A, Sahabi 12P33A, 34P30A, 10P61A, see Figure 7; Meikle, 1987).

The new distal humerus from As Sahabi exhibits а fundamentally cercopithecoid morphology in several respects. The medial trochlear keel is strongly developed, compared with its weaker expression in primitive catarrhines and hominoids, and projects both anteriorly and distally from the remainder of the humeral-ulnar articulation. The anterior surface of the capitulum is flattened, compared with the spheroidal convexity of the humero-radial articulation in hominoids. The medial epicondyle, which forms the area of origin of the carpal and digital flexors, is abbreviated and posteriorly oriented, compared with the longer and more medially directed medial epicondyle of hominoids. Moreover, 514P28A lacks the well-developed median (or lateral) trochlear keel and zona conoidea of hominoids.

To a great extent, the cercopithecine-like features of 514P28A probably relate to adaptations for a semiterrestrial/terrestrial substrate preference.

The medial trochlear keel of 514P28A is very strongly developed so that it extends as a distinct flange distally and anteriorly. Extant colobines, in contrast, typically have a less well-developed trochlear keel. The strongly posterior orientation of the medial epicondyle of 514P28A is also like that of terrestrial cercopithecines. Extant colobine medial epicondyles are usually more medially oriented. The deep and narrow humero-ulnar articulation of semiterrestrial/terrestrial cercopithecines, tightly limiting elbow motions to flexion and extension, is mirrored in the structure of 514P28A. The new specimen also has strong development of a flange on the lateral margin of a deep olecranon fossa. This lateral flange would have articulated with a proximal extension of the anconeal process of the ulna (a condition present on a cercopithecine-like 179P15A, ulna previously collected at As Sahabi [Meikle, 1987]).

Two conditions of 514P28A are unusual. First, the medial surface of the distal humerus (between the medial trochlear keel and the medial epicondyle) is marked by a very deep and well-defined fossa. Second, both the coronoid and radial fossae (but especially the former) are deeply hollowed. This latter condition is also clearly expressed in 34P30A, a much less complete cercopithecid distal humerus from As Sahabi.

Most of the distal humeri from As Sahabi lack sufficient morphology to be certain which subfamily they represent. 10P61A is probably colobine because it has strong development of the lateral trochlear keel and a more spheroidal capitulum than 514P28A. 13P15A also appears to differ from other distal humeri due to its more

Table 4. Measurements of As Sahabi cercopithecoid distal humerus 514P28A				
Table 4. Measurements of As Sahabi cercopithecoid dista Maximum medio-lateral breadth of distal end Maximum antero-posterior thickness of distal end Antero-posterior thickness of medial trochlear keel Proximo-distal length of medial trochlear keel Maximum medio-lateral breadth of trochlea Maximum medio-lateral breadth of capitulum Medio-lateral breadth of coronoid fossa Medio-lateral breadth of radial fossa Proximo-distal length of mid-trochlea Proximo-distal length of capitulum Medio-lateral breadth of olecranon fossa Madia lateral breadth of trochlea protoriorly	24.8 15.1 12.5 12.9 ca. 11.5 ca. 8.4 7.4 4.3 7.6 9.0 9.9 0.5			
Maximum antero-posterior depth of olecranon fossa	7.9			
Maximum antero-posterior depth of olecranon fossa	9.5 7.9			
Medio-lateral breadth of lateral supracondylar crest (from olecranon fossa) Orientation of medial epicondyle	8.5 71 degrees			
Orientation of medial epicondyle	/ 1 uegrees			

expansive lateral trochlear keel and spheroidal capitulum. It too may have colobine affinities. The absence of a medial epicondyle makes it difficult to test whether either of these possible colobines had a more arboreal adaptation as is indicated by the more expansive trochlear keel and spheroidal capitulum.

CONCLUSIONS

Both the new cercopithecoid mandible and distal humerus from As Sahabi are cercopithecines and may belong to the same species. The mandible and other papionin teeth from As Sahabi are readily distinguished from fossil macaques from the site of Menacer. They are more similar to *M. libyca* from Wadi Natrun, although differences exist between the Natrun and As Sahabi fossils. Both have similarities to the eastern African Late Miocene species P. lothagamensis. The unusually high degree of buccal flare on the molars is sufficient to place them in a new species, but deciding whether to place it in the genus Macaca or Parapapio is more difficult to determine. In the past, placement of the North African fossil papionins into Macaca rather than Parapapio rested solely on their geographic location, primitive dentition, and the assumption that Macaca had its origins in North Africa (Delson, 1980). Fossil papionins that may be ancestral to M. sylvanus first occur at Casablanca in Spain 6 million years ago (Kohler et al., 2000). It is equally possible that the Natrun and As Sahabi specimens belong to a widespread African radiation of Miocene Parapapio. The squarish shape and the unusually high buccal flare of the As Sahabi molars and the elongated and steeply sloping symphysis of

M. libyca make their connection to *Parapapio*, especially to *P. lothagamensis*, highly tenable.

Reexamination of previously collected specimens from As Sahabi indicates that colobines were extremely rare at the site and may only be represented by one or two postcranial elements and upper molars that are difficult to distinguish from Miocene papionins. In contrast, the complete skull of Libypithecus markgrafi from Wadi Natrun is clearly colobine and distinct from that of the European Mesopithecus. Its long shear crest and high frequency of microwear scratches on its molars indicate that Libypithecus was the oldest known committed folivore in the colobine fossil record (Reitz, 2002; Reitz and Benefit, 2001). It is more likely related to the new colobines from Lemudong'o or to the Pliocene large-bodied colobines from eastern Africa, such as Paracolobus and Rhinocolobus. If colobine, the As Sahabi upper molars exhibit a much lower degree of shearing potential and cusp relief than Libypithecus and would have consumed as many leaves as fruits, similar to the diet predicted for Mesopithecus С. and flandrini. Its affinities might have been with the Miocene colobines of Europe. More evidence is needed to test this hypothesis.

REFERENCES

AMBROSE, S.H., HLUSKO, L.J., KYULE, D., DEINO, A. and WILLIAMS, M. (2003). Lemudong'o: A new 6 Ma paleontological site near Narok, Kenya Rift Valley. *J. Hum. Evol.* **44** (6), 737-742.

ARAMBOURG, C. (1959). Vertebres continentaux du Miocene superieur de l'Afrique du Nord. *Publications du Service* de la Carte Geologique de L'Algerie (n.s.) Paleontologie, Memoire **4**, 1-159.

BENEFIT, B.R. and PICKFORD, M. (1986). Miocene fossil cercopithecoids from Kenya. *Am. J. Phys. Anthropol.* **69**, 441-464.

BOAZ, N.T., GAZIRY, A.W. and EL-ARNAUTI, A. (1979). New fossil finds from the Libyan upper Neogene site of Sahabi. *Nature* **280**, 137-140.

BOAZ, N.T. and MEIKLE, W.E. (1982). Fossil remains of Primates (Cercopithecoidea and Hominoidea) from the Sahabi Formation. *Garyounis Sci. Bull.*, *Spec. Issue* **4**, 41-48.

DELSON, E. (1980). Fossil macaques, phyletic relationships and a scenario of deployment. *In: The Macaques: Studies in Ecology, Behavior and Evolution (ed D.G.* Lindburg). Van Nostrand Reinhold, New York, 10-30.

DISOTELL, T.R. (2000). Molecular systematics of the Cercopithecidae. *In: Old World Monkeys (eds* P.F. Whitehead and C.J. Jolly). Cambridge University Press, Cambridge, 29-56.

FROST, S.R. (2001). New Early Pliocene Cercopithecidae (Mammalia: Primates) from Aramis, Middle Awash Valley, Ethiopia. *American Museum Novitates* **3350**, 1-36.

FROST, S.R., HAILE-SELASSI, Y. and HLUSKO, L. (2007). Late Miocene Cercopithecidae from the Middle Awash, Afar, Ethiopia. *Am. J. Phys. Anthropol.* **132** (S44): 111.

GRINE, F.E. and HENDEY, Q.B. (1981). Earliest primate remains from South Africa. S. Afr. J. Sci. **77**, 374-376.

GUNDLING, T. AND HILL, A. (2000). Geological context of fossil Cercopithecoidea from eastern Africa. *In: Old World Monkeys (eds* P.F. Whitehead and C.J. Jolly). Cambridge University Press, 180-213.

HAILE-SELASSIE, Y., WOLDEGABRIEL, G., WHITE, T.D., BERNOR, R.L., DEGUSTA, D., RENNE, P.R., HART, W.K., VRBA, E., AMBROSE, S. and HOWELL, F.C. (2004). Mio-Pliocene mammals from the Middle Awash, Ethiopia. *Geobios* **37** (4), 536-552.

HLUSKO, L.J. (2007a). A new Late Miocene species of *Paracolobus* and other cercopithecoid (Mammalia: Primates) fossils from Lemudong'o, Kenya. *Kirtlandia* **56**, 72-85.

HLUSKO, L.J. (2007b). Fossil colobines from Asa Issie Ethiopia and Lemudong'o, Kenya. *Am. J. Phys. Anthropol.* **132** (S44): 130.

KINGSTON, J.D., JACOBS, B.F., HILL, A. and DEINO, A. (2002). Stratigraphy, age and environments of the Late Miocene Mpesida Beds, Tugen Hills, Kenya. *J. Hum. Evol.* **42**, 95-116.

KOHLER, M., MOYA-SOLA, S. and ALBA, D. (2000). *Macaca* (Primates, Cercopithecidae) from the Late Miocene of Spain. *J. Hum. Evol.* **38**, 447-452.

LEAKEY, M.G., TEAFORD, M.F. and WARD, C.V. (2003). Cercopithecidae

from Lothagam. *In: Lothagam: The Dawn of Humanity in Eastern Africa. (eds* M.G. Leakey and J.M. Harris). Columbia University Press, New York, 201-248.

MEIKLE, W.E. (1987). Fossil Cercopithecidae from the Sahabi Formation. *In: Neogene Paleontology and Geology of Sahabi (eds* N.T. Boaz, A. El-Arnauti, A.W. Gaziry, J. de Heinzelin, and D.D. Boaz). Liss, New York, 119-127.

REITZ, J.J. (2002). Dietary adaptations of Late Miocene Colobinae. *Am. J. Phys. Anthropol.* 34 (Suppl.) **43**, 129-130.

REITZ, J.J. and BENEFIT, B.R. (2001). Dental microwear in *Mesopithecus pentelici* from the Late Miocene of Pikermi, Greece. *Am. J. Phys. Anthropol.* **32** (Suppl.), 125.

SENUT, B. (1994). Cercopithecoidea Neogenes et Quarternaires du Rift Occidental (Ouganda). In: Geology and Palaeobiology of the Albertine Rift Valley, Uganda-Zaire. Vol. II: Palaeobiology (eds B. Senut and M. Pickford). Orleans, CIFEG Occasional Publication **1994/29**, 195-205.

STERNER, K.N., RAAUM, R.L., ZHANG, Y-P, STEWART, C-B and DISOTELL, T.R. (2006). Miochondrial data support an odd-nosed colobine clade. *Molecular Phylogenetics and Evolution* **40**, 1-7.

STROMER, E. (1913). Mitteilungen ueber die Wirbeltierreste aus dem Mittelpliocän des Natrontales (Ägypten). Zeitschrift der Deutsche Geol. Gesellschaft **65**, 350-372. SZALAY, R.S. and DELSON, E. (1979). *Evolutionary History of the Primates*. Academic Press, New York, 580 p.

THOMAS, H. and PETTER, G. (1986). Revision de la faune de mammifères du Miocene superieur de Menacer (ex-Marceau), Algerie: Discussion sur l'âge due gisement. *Géobios* **19**, 357-373.

TING, N. (2007). Mitochondrial relationships and divergence dates of the African colobines: Evidence of Miocene origins for the living colobus monkeys. *Am. J. Phys. Anthropol.* **132** (S44), 232.

TOSI, A., DETWILER, K.M. and DISOTELL, T.R. (2005). X-chromosomal window into the evolutionary history of the guenons (Primates: Cercopithecini). *Molecular Phylogenetics and Evolution* **36**, 58-66.

VIGNAUD, P., DURINGER, P., MACKAYE, H. T., LIKIUS, A., BLONDEL, C., BOISSERIE, J.-R., DE BONIS, L., EISENMANN, V., ETIENNE, M. E., GERAADS, D., GUY, F., LEHMANN, T., LIHOREAU, F., LOPEZ-MARTINEZ, N.. MOURER-CHAUVIRE, C., OTERO, O., RAGE, J. C., SCHUSTER, M., Viriot, L., Zazzo, A. and BRUNET, M. (2002). Geology and palaeontology of the Upper Miocene Toros-Menalla hominid locality, Chad. *Nature* **418**, 152-155.